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Abstract. We introduce a model for the spreading of epidemics by long-range infections and investigate
the critical behaviour at the spreading transition. The model generalizes directed bond percolation and is
characterized by a probability distribution for long-range infections which decays in d spatial dimensions
as 1/rd+σ. Extensive numerical simulations are performed in order to determine the density exponent β
and the correlation length exponents ν‖ and ν⊥ for various values of σ. We observe that these exponents
vary continuously with σ, in agreement with recent field-theoretic predictions. We also study a model for
pairwise annihilation of particles with algebraically distributed long-range interactions.

PACS. 05.70.Ln Nonequilibrium thermodynamics, irreversible processes – 64.60.Ak Renormalization-
group, fractal, and percolation studies of phase transitions – 64.60.Ht Dynamic critical phenomena

1 Introduction

Spreading processes are often encountered in nature in
situations as diverse as epidemics [1,2], catalytic reac-
tions [3], forest fires [4], and transport in random me-
dia [5,6]. Depending on the particular environmental con-
ditions, the spreading process may either continue to
spread over the whole population or die out after some
time. The essential features of this transition between sur-
vival and extinction of the spreading agent may be de-
scribed by simple stochastic lattice models, which mimic
the spreading mechanism by certain probabilistic rules.
Usually such models incorporate two competing processes,
namely spreading (infection) of nearest neighbors and
spontaneous recovery (healing), with or without immu-
nization. The spreading properties depend on the relative
rates of the two processes. For example, if the rate for
infection is very low, the spreading agent will disappear
after some time and the system becomes trapped in an
inactive state (or set of states) which is usually referred
to as the absorbing state of the model. On the other hand,
if infections occur more frequently, the spreading process
may survive for a very long time. The main theoretical
interest in these models stems from the fact that the
phase transition from the fluctuating active phase into the
non-fluctuating absorbing state is continuous, and charac-
terized by universal scaling laws associated with certain
critical exponents. As in equilibrium statistical mechan-
ics, these exponents allow one to categorize different
lattice models into universality classes. Each of these
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universality classes then corresponds to a specific under-
lying field theory.

The most important universality class for spreading
transitions with short-range interactions is Directed Per-
colation (DP) [7], as described by Reggeon field theory [8–
10]. In fact, DP covers the majority of phase transitions
from a fluctuating active phase into absorbing states. The
fundamental properties of DP have been expressed as a
conjecture in references [10,11]. Accordingly a spreading
transition belongs to the DP class if (a) the absorbing
state is unique, (b) the active phase is characterized by
a one-component positive order parameter, (c) there are
no other symmetries of the physical system except for
spatio-temporal translation and spatial reflection invari-
ance, (d) there is no frozen disorder, and (e) the dynamical
rules involve only short-range interactions.

In many realistic spreading processes, however, short-
range interactions do not appropriately describe the un-
derlying transport mechanism. This situation emerges, for
example, when an infectious disease is transported by in-
sects. The motion of the insects is typically not a random
walk, rather one observes occasional flights over long dis-
tances before the next infection occurs. Similar phenom-
ena are expected when the spreading agent is subjected
to a turbulent flow. It is intuitively clear that occasional
spreading over long distances will significantly alter the
spreading properties. On a theoretical level such a super-
diffusive motion may be described by Lévy flights [6],
i.e., by uncorrelated random moves over algebraically dis-
tributed distances.

Anomalous directed percolation, as originally proposed
by Mollison [1] in the context of epidemic spreading,
is a generalization of DP in which the spreading agent
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performs Lévy flights. This means that the distribution of
the spreading distance r is given by

P (r) ∼ 1/rd+σ, (σ > 0), (1)

where d denotes the spatial dimension of the system. The
exponent σ is a free parameter that controls the char-
acteristic shape of the distribution. It should be empha-
sized that σ does not introduce any new length scale,
rather it changes the scaling properties of the underlying
(anomalous) diffusion process. We are particularly inter-
ested in the critical properties of anomalous DP close to
the phase transition. As in the case of ordinary DP, we
expect anomalous DP to be characterized by the univer-
sal critical exponents β, ν⊥, and ν‖. The exponent β is
related to the order parameter, the density of active sites
n. Since the DP process is controlled by a single param-
eter p, with the phase transition taking place at p = pc,
then close to this transition in the active phase n van-
ishes as n ∼ (p − pc)β . At the same time, we expect the
spatial and temporal correlation lengths ξ⊥ and ξ‖ to di-
verge as ξ⊥ ∼ |p − pc|−ν⊥ and ξ‖ ∼ |p − pc|

−ν‖ , respec-
tively, on both sides of the transition. Theoretically, one
is interested in the dependence of these exponents on σ,
whether the exponents are independent from one another,
and how they cross over to the exponents of ordinary DP.
Some time ago Grassberger [12] claimed that the critical
exponents of anomalous DP should depend continuously
on the control exponent σ. This was confirmed by esti-
mations of the exponent β based on a coherent anomaly
method [13]. Very recently this work has been consider-
ably clarified and extended by Janssen et al. [14], who have
presented a comprehensive field-theoretic renormalization
group (RG) calculation for anomalous spreading processes
with and without immunization. The aim of the present
work is to verify their results numerically. To this end we
introduce a model for anomalous DP which generalizes di-
rected bond percolation. In contrast to previously studied
models [15,16] we do not introduce an upper cutoff for
the flight distance r, and hence finite size effects are dras-
tically reduced. Extensive numerical simulations are per-
formed in order to determine the critical exponents, which
are found to compare favourably with the field-theoretic
predictions.

The paper is organized as follows. In Section 2 we first
review the known field-theoretic results. In Section 3 we
introduce a lattice model for anomalous DP and discuss
the role of finite size effects. In Section 4 the numerical re-
sults are presented and compared with the field-theoretic
predictions. We also discuss the case of anomalous pair
annihilation in Section 5.

2 Field-theoretic predictions

In this section we will summarize some of the field-
theoretic results which have been derived in reference [14].
First of all let us recall that the Langevin equation for

ordinary DP [10] is given by

∂

∂t
n(x, t) = (τ +DN∇

2)n(x, t)− λn2(x, t) + ζ(x, t),

(2)

where the constant τ controls the balance between off-
spring production and self-destruction, and plays the role
of the deviation p−pc from the critical percolation proba-
bility. The infection of nearest neighbors is represented by
the diffusion operator ∇2, while the nonlinear term incor-
porates the exclusion principle on the lattice. The fluctu-
ations are taken into account by adding a multiplicative
Gaussian noise field ζ(x, t) which is defined by the corre-
lations

〈ζ(x, t)ζ(x′, t′)〉 = 2Γ n(x, t) δd(x− x′)δ(t − t′). (3)

In order to generalize this Langevin equation to the case
of anomalous DP, the short-range diffusion has to be re-
placed by a non-local integral expression which describes
long-range spreading according to the probability distri-
bution P (r):

∂

∂t
n(x, t) = τ n(x, t)− λn2(x, t) + ζ(x, t)

+D

∫
ddx′ P (|x− x′|)[n(x′, t)− n(x, t)].(4)

The two contributions in the integrand describe gain and
loss processes, respectively. Keeping the most relevant
terms in a small momentum expansion, this equation may
be written as [14]

∂

∂t
n(x, t) =

(
DN∇

2 +DA∇
σ + τ

)
n(x, t)

−λn2(x, t) + ζ(x, t), (5)

where the noise correlations are assumed to be the same
as in equation (3). DN and DA are the rates for normal
and anomalous diffusion, respectively. The anomalous dif-
fusion operator ∇σ describes moves over long distances
and is defined through its action in momentum space

∇σ eik·x = −kσ eik·x, (6)

where k = |k|. The standard diffusive term DN∇2 takes
into account the short range component of the Lévy dis-
tribution. Note that even if this term were not initially
included, it would still be generated under renormaliza-
tion of the theory.

Before summarizing the field-theoretic results, let us
first consider the mean-field approximation. As in ordinary
DP the mean-field dynamic phase transition occurs at τ =
0, where gain and loss processes balance one another. For
τ < 0, the particle density decays exponentially quickly
towards n = 0, which is the absorbing state of the system.
However, for τ > 0, the stable stationary state now has
the non-zero particle density n = τ/λ. Since τ plays the
role of p−pc, the mean field density exponent is βMF = 1.
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The scaling exponents ν⊥ and ν‖ can be derived from an
inspection of equation (5). For σ < 2, we see that

ξ⊥ ∼ |τ |
−ν⊥ , νMF

⊥ = 1/σ, (7)

and the characteristic time diverges according to

ξ‖ ∼ |τ |
−ν‖ , νMF

‖ = 1. (8)

As expected, for σ ≥ 2, these exponents cross over
smoothly to the ordinary DP exponents. Note that the
mean field result demonstrates that ν⊥ varies continuously
with σ.

The mean field approximation is expected to be quan-
titatively accurate above the upper critical dimension. For
d ≤ dc, however, fluctuation effects have to be taken into
account. The fluctuation corrections to the critical expo-
nents can be computed by a field-theoretic RG calculation.
Using standard techniques, the Langevin equation (5) can
be rewritten as an effective action:

S[ψ̄, ψ] =

∫
ddx dt

[
ψ̄(∂t − τ −DN∇

2 −DA∇
σ)ψ

+
g

2
(ψ̄ψ2 − ψ̄2ψ)

]
. (9)

Simple power counting on this action reveals that the up-
per critical dimension is dc = 2σ, below which fluctuation
effects become important. In the above action the field
ψ(x, t) can be identified with the coarse-grained particle
density field n(x, t) [17] and ψ̄(x, t) is the corresponding
response field. The expression in equation (9) differs from
the usual action of Reggeon field theory [8–10] by the ad-
dition of a term representing anomalous diffusion.

The field-theoretic RG calculation in reference [14] em-
ploys Wilson’s momentum shell renormalization group re-
cursion relations in order to determine the critical expo-
nents. The authors of the present work have independently
performed similar calculations based on dimensional regu-
larization which are fully consistent with reference [14]. In
the following we summarize the main results. The critical
exponents to one-loop order in d = 2σ− ε dimensions are
given by

β = 1−
2ε

7σ
+O

(
ε2
)

,

ν⊥ =
1

σ
+

2ε

7σ2
+O

(
ε2
)

,

ν‖ = 1 +
ε

7σ
+O

(
ε2
)

,

z =
ν‖

ν⊥
= σ − ε/7 +O

(
ε2
)

. (10)

Moreover, it can be shown that the hyperscaling relation

θ + 2δ = d/z (δ = β/ν‖), (11)

for the so-called critical initial slip exponent θ [18], holds
for arbitrary values of σ. The exponent θ (which is also
sometimes denoted by η in the literature) describes the
initial increase in the number of active particles N(t) for

critical systems starting from initial states at very low
density, i.e. where we have N(t) ∼ tθ. The critical initial
slip plays an important role in dynamical Monte-Carlo
simulations (see Sect. 4). To one-loop order, θ and δ are
given by

θ =
ε

7σ
+O

(
ε2
)

, δ = 1−
3ε

7σ
+O

(
ε2
)

. (12)

Finally, thanks to the fact that DA does not get renormal-
ized, one can prove the exact scaling relation

ν‖ − ν⊥(σ − d)− 2β = 0. (13)

The fact that DA does not get renormalized means that
anomalous DP is described by two rather than three inde-
pendent critical exponents. The scaling relation (13) has
a further surprising consequence. Assuming that β, ν⊥
and ν‖ change continuously with σ, then for fixed d, it
predicts the value σc where the system should cross over
to ordinary DP (assuming the crossover is smooth). To
this end one simply has to insert the numerically known
values of the DP exponents into equation (13). Surpris-
ingly one obtains σc = 2.076 6(2) in one, σc ' 2.2 in
two, and σc = 2 + ε̃/12 in d = 4 − ε̃ spatial dimensions.
Thus the crossover takes place at σc > 2 which collides
with the intuitive argument that the anomalous diffusion
operator ∇σ should only be relevant if σ < 2. But, as
pointed out in reference [14], this naive argument may
be wrong in an interacting theory where the critical be-
haviour is determined by a nontrivial fixed point of an
RG transformation. Rather the field-theoretic calculation
predicts that anomalous diffusion is still relevant in the
range 2 ≤ σ < σc(d) for d < 4. This prediction seems to
be additionally surprising since the operators for anoma-
lous and ordinary diffusion ∇σ and ∇2 are expected to
coincide for σ = 2. However, one can show that for σ = 2
the most relevant terms in a small momentum expansion
of equation (4) also contain a logarithmic correction of the
form −k2 log k. Therefore anomalous and ordinary diffu-
sion are indeed different in that case, supporting the view
that long-range spreading might be relevant in the regime
2 ≤ σ < σc. Unfortunately, the numerical simulations pre-
sented in Section 4 are not accurate enough to confirm this
prediction.

Another interesting aspect of anomalous DP is that
σ can be chosen in such a way that the critical dimen-
sion dc = 2σ approaches the actual physical dimension at
which the simulations are performed (see Sect. 4). Even
in one spatial dimension this allows us to verify the one-
loop results (10). For example, if σ = 1/2 + µ, the critical
dimension of the system is dc = 1 + 2µ and hence the ex-
ponents in a 1+1-dimensional system change to first order
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in µ as

β = 1− 8µ/7 +O
(
µ2
)

,

ν⊥ = 2− 12µ/7 +O
(
µ2
)

,

ν‖ = 1 + 4µ/7 +O
(
µ2
)

,

z = 1/2 + 5µ/7 +O
(
µ2
)

,

δ = 1− 12µ/7 +O
(
µ2
)

,

θ = 4µ/7 +O
(
µ2
)

. (14)

In Section 4 we shall demonstrate that this initial change
of the exponents is indeed observed in numerical simula-
tions.

3 A lattice model for anomalous directed
percolation

Anomalous DP was first studied numerically by Al-
bano [15] who introduced a model for branching-annihi-
lating random walks in which the particles performed Lévy
flights. However, his estimates for the critical exponents
were rather inconclusive, in particular they violated the
scaling relation (13) and even the mean-field limit was not
correctly reproduced. In reference [14] it was suspected
that these problems could have originated in the trunca-
tion of the flight distances at some upper cutoff, usually
at the system size. The upper cutoff effectively suppressed
long range motion and hence DP-like behaviour was am-
plified. A systematic finite size analysis of a similar model
confirms this point of view and shows that even on a lattice
with 104 sites finite-size effects are still extremely domi-
nant.

Similar problems were also encountered in a more re-
cent study of a generalized Domany-Kinzel model with
long range interactions [16]. In this case an upper cutoff
for P (r) was also introduced (by defining transition prob-
abilities w(Sti |S

t−1) in which the sum over the spreading
distance for a system with N sites is truncated at N/2). It
was reported that the percolation threshold depended on
the system size and varied by more than 20%. However,
it seems that this unusual drift of pc is actually related to
extremely strong finite size effects.

In order to minimize finite size effects, we introduce a
model in which the probability distribution for long-range
spreading is not truncated from above. As in the case of
ordinary directed bond percolation, our model is defined
on a tilted square lattice and evolves by parallel updates.
A binary variable si(t) is attached to each lattice site i.
si = 1 means that the site is active (infected) whereas
si = 0 denotes an inactive (healthy) site. Although the
model may be defined in arbitrary spatial dimensions, we
will focus here on the 1+1-dimensional case. The dynam-
ical rules (see Fig. 1) depend on two parameters, namely
the control exponent σ > 0 and the bond probability
0 ≤ p ≤ 1. For a given configuration {si(t)} at time t,
the next configuration {si(t + 1)} is constructed as fol-
lows. First the new configuration is initialized by setting

si-1s

i-7s i+9s

i+1

(a) Ordinary directed bond percolation:

t

t+1

t

t+1

is

is

2d  -1L 2d   -1R

(b) Anomalous directed bond percolation: 

Fig. 1. Dynamical rules for (a) ordinary directed bond perco-
lation and (b) the present model with algebraically distributed
distances. dL and dR are defined in the text.

si(t + 1) := 0. Then a loop over all active sites i in the
previous configuration is executed. This loop consists of
the following steps:

1. Generate two random numbers zL and zR from a flat
distribution between 0 and 1.

2. Define two real-valued spreading distances rL = z
−1/σ
L

and rR = z
−1/σ
R , for spreading to the left (L) and to

the right (R). The corresponding integer spreading dis-
tances dL and dR are defined as the largest integer
numbers that are smaller than rL and rR, respectively.
If dL or dR exceed the allowed range for integer num-
bers we go back to step 1.

3. Generate two further random numbers yL and yR
drawn from a flat distribution between 0 and 1, and
assign si+1−2dL(t+1) := 1 if yL < p, and si−1+2dR(t+
1) := 1 if yR < p, respectively. In finite systems the
arithmetic operations in the indices are carried out
modulo L by assuming periodic boundary conditions,
i.e. si ≡ si±L.

The model includes two special cases. For σ → ∞
it reduces to ordinary directed bond percolation with
pc ' 0.6447. On the other hand, for σ → 0 the inter-
action becomes totally random. In that case the model is
exactly solvable and the transition takes place at pc = 1/2.
In between, the spreading properties of the model change
drastically, as illustrated in Figure 2.

As can be easily verified, the assignment r = z−1/σ

reproduces the normalized probability distribution

P (r) =

{
σ/r1+σ if r > 1,

0 otherwise.
(15)

As usual the distribution has a lower cutoff at rmin = 1,
which represents the lattice spacing. But in contrast to
previously studied models, no upper cutoff is introduced
and therefore almost arbitrarily large spreading distances
may be generated (limited only by the maximal range of
64-bit integer numbers). In finite systems the target site
is determined by assuming periodic boundary conditions,
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x

t

=0.5σ

=2.0σ=σ

=1.0σ

8

Fig. 2. Critical anomalous directed percolation in 1+1 dimen-
sions for different values of σ. The figure shows typical clusters
starting from 5 active sites in the center of the lattice. The
case σ =∞ corresponds to ordinary DP. As σ decreases, spa-
tial structures become more and more smeared out until in the
mean field limit σ = 1/2 the particles appear to be randomly
distributed over the whole system. For small values of σ finite
size effects may lead to sudden transitions into the absorbing
state.

i.e., the particle may “revolve” several times around the
system. It turns out that this simple trick considerably re-
duces finite size effects. In particular the value of pc is well
defined over a wide range of system sizes. Nevertheless fi-
nite size effects are still important in this model. In partic-
ular for small values of σ, where long-distance flights occur
frequently, finite-size effects enhance the probability for a
target site to be already occupied. This in turn reduces
the average density of active sites in a growing cluster and
therefore increases the probability to enter the absorbing
state. For example, for σ = 0.5, a small system with only
200 sites reaches the absorbing state typically after only a
few hundred time steps (see Fig. 2). Therefore, in order to
further reduce finite size effects, we either use very large
lattice sizes of about 105 sites (as in stationary simula-
tions, see below) or else in other (dynamical) simulations,
we can eliminate finite size effects almost completely by
working on a virtually infinite lattice (see also below).

4 Numerical results

In order to estimate the critical exponents of anoma-
lous DP we employ two different standard Monte-Carlo

0 0.5 1 1.5 2 2.5
σ

0.50

0.55

0.60

pc

Fig. 3. The critical percolation threshold of anomalous di-
rected bond percolation as a function of σ.

techniques, namely dynamical simulations at criticality
and steady-state simulations in the active phase.

In dynamical simulations [19] a critical cluster is grown
from a single active seed (just as in Fig. 2). Averaging over
many independent realizations one measures the survival
probability P (t), the number of active particles N(t), and
the mean square spreading of surviving clusters from the
origin R2(t). At criticality, these quantities are expected
to scale as

P (t) ∼ t−δ, N(t) ∼ tθ, R2(t) ∼ t2/z , (16)

where δ = β/ν‖ and θ is the critical initial slip expo-
nent [18] (see Eq. (11)). Since the size of the growing
cluster is finite, we are able to perform the simulations
on a virtually infinite lattice by storing the coordinates
of active particles in a dynamically generated list. The
effective system size is then determined by the maximal
spreading range (i.e., the maximal range of integer num-
bers ±263), which means that finite size effects are almost
eliminated. Since deviations from criticality lead to a cur-
vature of P (t) in a double logarithmic plot, the dynamical
simulation method allows a precise estimate of the perco-
lation threshold pc for different values of σ (see Fig. 3 and
Tab. 1). As expected, pc tends to 1/2 in the limit σ → 0.

Having determined the critical points, we measure the
quantities P (t), N(t), and R2(t) at criticality. However, it
turns out that, in the presence of sufficiently long-range in-
teractions, the mean square spreading, defined as an arith-
metic average R2(t) = 〈|x(t)|2〉, diverges. In order to cir-
cumvent this problem, we instead compute the geometric
average

R2(t) = exp
[
〈log(|x(t)|2)〉

]
. (17)

This average turns out to be finite for all σ > 0 and renders
consistent results in the case of ordinary DP. The numer-
ical estimates for the dynamical exponents δ, θ, and z/2
are shown in Figure 4.

The exponent β is determined by stationary simula-
tions in the active phase. As the active phase of anomalous
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Table 1. Estimates of the percolation threshold and the critical exponents for various values of σ, compared to the corresponding
values for ordinary bond DP.

σ pc β ν⊥ ν‖ z θ

0.2 0.500 26(1) 0.99(4) 4.7(6) 1.00(6) 0.21(2) 0.01(3)
0.3 0.500 97(1) 0.98(5) 3.2(3) 1.01(6) 0.31(2) 0.02(3)
0.4 0.502 45(2) 0.97(6) 2.5(2) 0.99(7) 0.39(2) 0.01(3)
0.5 0.504 90(2) 0.95(6) 1.87(13) 1.01(6) 0.54(2) 0.02(3)
0.6 0.508 47(2) 0.88(5) 1.76(12) 1.02(6) 0.58(2) 0.04(3)
0.8 0.518 20(3) 0.76(4) 1.60(11) 1.13(7) 0.71(2) 0.13(3)
1.0 0.529 81(5) 0.65(3) 1.52(11) 1.25(7) 0.82(2) 0.20(3)
1.2 0.541 97(5) 0.56(3) 1.46(10) 1.40(9) 0.96(3) 0.28(2)
1.4 0.553 90(10) 0.49(3) 1.36(11) 1.48(11) 1.09(3) 0.30(2)
1.6 0.565 20(10) 0.43(3) 1.29(11) 1.56(14) 1.21(3) 0.30(2)
1.8 0.575 61(10) 0.39(3) 1.23(13) 1.62(18) 1.32(3) 0.31(2)
2.0 0.585 05(10) 0.34(3) 1.13(15) 1.62(20) 1.43(3) 0.32(2)
2.2 0.593 45(10) 0.32(3) 1.13(15) 1.68(21) 1.49(4) 0.31(2)
2.4 0.600 85(10) 0.30(3) 1.15(17) 1.76(24) 1.53(5) 0.32(2)
DP 0.644700 0.2765 1.097 1.734 1.581 0.3137

0 0.5 1 1.5 2 2.5
σ

0

0.2

0.4

0.6

0.8

1

δ

η

z/2

Fig. 4. Estimates for the critical exponents from dynamical
Monte-Carlo simulations in comparison with the field-theoretic
predictions (solid lines) and the DP exponents (dot-dashed
lines).

DP is characterized by a homogeneous particle density,
this type of simulation has to be performed on a finite lat-
tice. In order to minimize finite size effects, we choose a
large lattice size of L = 105 sites. Starting from a fully oc-
cupied initial state, the system first equilibrates over 104

time steps before the stationary density n is averaged over
another 104 time steps. Our estimates for β are shown in
Figure 5. Combining the results we can now compute the
scaling exponents ν⊥ = β/δz and ν‖ = β/δ, which are
summarized in Table 1.

According to equation (14), the one-loop expansion
predicts the initial variation of the critical exponents close
to σ = 1/2. This is one of the rare cases where one can
directly “see” the field-theoretic results in the simulation

0 0.5 1 1.5 2 2.5
σ

−0.5

0

0.5

1

1.5

2

ν||

ν T

β

∆1

∆2

Fig. 5. Estimates for the exponent β and the derived expo-
nents ν⊥ and ν‖ in comparison with the field-theoretic results
(solid lines) and the DP exponents (dot-dashed lines). The
quantities ∆1 and ∆2 represent deviations from the scaling
relations (11, 13), respectively (see text).

data. In Figures 4, and 5, the predicted initial slopes are
indicated by solid lines. Clearly they are in fair agreement
with the numerical estimates, which confirms the field-
theoretic results of reference [14]. For σ > 1.5, however,
the numerical results are not accurate enough to verify
the predicted location of the crossover to ordinary DP at
σc = 2.076 6(2). It seems that the deviations in this regime
are due to very long crossover times in the dynamical sim-
ulations, resulting from a complicated interplay between
long-range and short-range processes.

In order to verify the scaling relations (11, 13) we
have also plotted the deviations ∆1 = 2δ + θ − 1/z and
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∆2 = 1−σ+(1−2δ)z which should be equal to zero in the
intervals σ ≥ 0.5 and 0.5 ≤ σ ≤ σc, respectively. In fact,
as shown in Figure 5, ∆1 is smaller than the error toler-
ance, which confirms the validity of the hyperscaling rela-
tion (11). Similarly the values of ∆2 confirm the validity of
equation (13) in the range 0.5 ≤ σ ≤ 1.5, whereas signif-
icant deviations occur for σ > 1.5. We believe that these
deviations do not indicate that the scaling relation (13) is
violated for large values of σ, rather they confirm that the
simulations in this regime may be affected by very long
crossover times.

5 Anomalous annihilation process

In this section we consider the somewhat simpler case of
anomalous pair annihilation A + A → ∅ with long-range
hopping. This model was previously studied in [20], using
both simulations and approximate theoretical techniques.
In this paper we will extend this previous work, by pre-
senting a systematic field-theoretic analysis, as well as by
performing more detailed numerical simulations.

In the ordinary annihilation process [21] with short-
range interactions, the average particle density is known
to decay as

n(t) ∼

 t−d/2 for d < 2,
t−1 ln t for d = dc = 2,
t−1 for d > 2.

(18)

Hence, except for the log correction in d = 2, the density
decays away as a power law, n(t) ∼ t−α. Turning now to
the Lévy-flight case, this may be described theoretically by
inserting an additional operator ∇σ into the well-known
field-theoretic action for pair annihilation (see [21]). The
resulting action reads

S[ψ̄, ψ] =

∫
ddxdt

{
ψ̄(∂t −DN∇

2 −DA∇
σ)ψ

+2λψ̄ψ2 + λψ̄2ψ2 − n0ψ̄δ(t)
}

, (19)

where n0 is the initial (homogeneous) density at t = 0.
Here the field ψ is not simply related to the coarse-
grained density field [17], although it is true that the av-
erage values of both fields are the same. The action (19)
can be derived systematically, starting with an appropri-
ate (non-local) Master equation — the details are given
in Appendix. Note also that the action for the process
A + A → A with Lévy flight hops differs only in the
coefficients of the reaction terms. Hence the Lévy flight
annihilation and coagulation processes are in the same
universality class.

An analysis of the above action follows very closely
that of reference [21]. For σ < 2, power counting reveals
that the upper critical dimension of the model is now
dc = σ < 2. For d > dc mean-field theory is expected
to be quantitatively accurate, with an asymptotic density
decay ∼ t−1. Below the upper critical dimension, however,
the renormalized reaction rate flows to an order ε = σ− d
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Fig. 6. The anomalous annihilation process: the graph shows
direct estimates and extrapolations for the decay exponent α,
as a function of σ. The solid line represents the exact result
(neglecting log corrections at σ = 1).

fixed point. This allows us to very quickly determine the
asymptotic density decay via dimensional arguments. Be-
low dc the only dimensionful quantity left in the problem
is the time t, which, for σ < 2, scales as [t] ∼ k−σ. Hence,
for σ < 2, the density must decay as:

n(t) ∼

 t−d/σ for d < σ,
t−1 ln t for d = dc = σ,
t−1 for d > σ.

(20)

The derivation of the logarithm at the upper critical di-
mension requires a slightly more sophisticated calculation,
which is, however, completely analogous to that in refer-
ence [21]. Note also that for σ ≥ 2 the results cross over
smoothly to the standard annihilation exponents of equa-
tion (18).

A lattice model for anomalous annihilation in 1 + 1
dimensions may be constructed by a simple modification
of the model for anomalous DP introduced in Section 3.
To this end steps 1-3 have been modified such that for all
active sites i we perform the following procedure:

1. Generate a random number z ∈ [0, 1] and define a
real-valued spreading distance r = z−1/σ. The corre-
sponding integer spreading distance d is defined as the
largest integer number smaller than r.

2. Generate another random number y ∈ [0, 1] and assign
snew
i+1−2d(t + 1) := 1 − sold

i+1−2d(t + 1) if y > 1/2, and

snew
i−1+2d(t + 1) := 1 − sold

i−1+2d(t + 1) otherwise. As in
the case of anomalous DP, the arithmetic operations
in the indices are carried out modulo L by assuming
periodic boundary conditions, i.e. si ≡ si±L.

In step 2 the state of the target site is simply inverted.
Therefore, if two particles move to the same target site,
they annihilate instantaneously.

Since the annihilation process starts with a homoge-
neous density of particles, it is impracticable to work with
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a virtually infinite lattice by storing the coordinates of
individual particles in a list. Rather we have to perform
ordinary simulations with a fixed system size. In order to
minimize finite size effects we choose a large lattice size of
216 sites. For various values of σ we measure the particle
density n(t) up to 104 time steps averaged over at least
103 independent runs. By measuring the slopes of n(t) in a
double logarithmic plot in the decade 103 ≤ t ≤ 104, we es-
timate the density decay exponents α(σ), which are shown
in Figure 6 (labeled as direct measurements). For σ < 1.5
the agreement with the theoretical result of equation (20)
(the solid line) is quite convincing, whereas large devia-
tions occur close to σ = 2. A detailed analysis of the local
slope of n(t) as a function of time in a double-logarithmic
plot shows that these deviations are related to very long
crossover times. In fact, determining the local slopes of
n(t) in a log-log plot and extrapolating them graphically
to t→∞, one obtains a much better coincidence. On the
other hand, for σ < 1, the extrapolation leads to larger de-
viations. These errors may be related to finite size effects
which are still extremely dominant in this regime.

6 Conclusions

In this paper we have, for the first time, studied numer-
ically the behaviour of Lévy-flight DP close to the phase
transition between the active and absorbing states. To this
end, we have introduced a lattice model for anomalous DP
in which finite size effects are considerably reduced. Using
special simulation techniques we have obtained accurate
values for the associated critical exponents in 1 + 1 di-
mensions, which are almost free from finite-size effects. In
addition we have performed quantitative tests of the one
loop field-theoretic results, by tuning the upper critical di-
mension of the model to lie just above d = 1. Our results
are all in good agreement with the recent field-theoretic
analysis of [14]. Close to σ = 2, however, our numerical
results are not accurate enough to confirm the form of
the predicted crossover to ordinary DP. We have also con-
sidered the simpler case of Lévy-flight pair annihilation,
where our numerics are again in agreement with (exact)
field-theoretic arguments.

Various possible extensions of the above models are
possible. The most obvious involves including a power law
waiting time distribution for the particles, in addition to
the power law Lévy distribution for particle hops. Hence,
in the absence of interactions, each particle would per-
form a continuous time Lévy flight (see [22] and references
therein). This modification should lead to a further uni-
versality class, with the exponents depending continuously
on the control parameters for both the Lévy-flight and the
(power law) waiting time distributions.

Appendix: Derivation of the anomalous
annihilation action

In this appendix we briefly describe how the anomalous
annihilation action (19) may be derived. To simplify mat-

ters we will not include the reaction terms — their deriva-
tion is precisely the same as in [21]. The appropriate Mas-
ter equation for (anomalous) diffusion is given by

∂

∂t
P ({n}; t) =

D0

lσ

∑
i

∑
j(6=i)

[(nj + 1)qji (A.1)

×P (. . . , nj + 1, . . . , ni − 1, . . . ; t)− ni qij P ({n}; t)] ,

where P ({n}) is the probability of the particle configu-
ration {n} = (n1, . . . , nN ), l is the microscopic lattice
spacing, D0 is the diffusion constant, and where qij gives
the appropriate weight for a hop from site i to site j. Fol-
lowing [23], we next introduce creation and annihilation

operators ai, a
†
i , such that

a†i |ni〉 = |ni + 1〉, ai|ni〉 = ni|ni − 1〉, (A.2)

with the commutator [ai, a
†
j ] = δij . The system state is

then given by

|Φ(t)〉 =
∑

n1,... ,nN

P ({n}; t)a†
n1

1 . . . a†
nN

N |0〉, (A.3)

where |0〉 is the vacuum state. Hence we can rewrite equa-
tion (A.1) as

∂

∂t
|Φ(t)〉 = −H|Φ(t)〉, (A.4)

where

H = −
D0

lσ

∑
i

a†i

∑
j(6=i)

(aj − ai)qji

 . (A.5)

We may now perform the mapping to a field theory using
standard methods (see [23]). After taking the continuum
limit in space, we end up with the continuum action

S =

∫
ddx dt

{
ψ̂(x, t) ∂tψ(x, t) −D1 ψ̂(x, t)

∫
ddy

×([ψ(y, t)− ψ(x, t)]f |x− y|)
}

, (A.6)

where we have the Lévy distribution

f(r) ddr ∼
1

rσ+d
ddr. (A.7)

Transforming this into Fourier space, we obtain

S =

∫
ddk

(2π)d
dt
{ ˜̂
ψ(k, t)∂tψ̃(−k, t)−D1[

ˆ̃
ψ(k, t)

×(f(k)− 1)ψ̃(−k, t)]
}

, (A.8)

with

f(k)− 1 =
1

N

∫
l

ddr
(e−ik.r − 1)

rd+σ
, (A.9)
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where N is a normalization constant. After some manipu-
lation of the above integral, and after performing a small
momentum expansion, we end up with

S =

∫
ddk

(2π)d
dt
[
˜̂
ψ(k, t)∂tψ̃(−k, t) +

˜̂
ψ(k, t)

×
{
DAk

σ +DNk
2 +O(k4)

}
ψ̃(−k, t)

]
, (A.10)

valid for 0 < σ < 4, σ 6= 2. The final action (19) is then
obtained by the inclusion of both the reaction terms, and
the initial density source.
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